Ambient Light Guiding System
for the Mobility Support of Elderly People

Applicable software components

Deliverable Name: D2.2 – Applicable software components
Deliverable Date: 30.09.2013
Classification: Report
Authors: Guido Kempter, Tom Ulmer, Markus Canazei, Eike Pokriefke, Edwin Atz, Hermann Atz, Ulrich Becker
Document Version: 4.0
Project Coordinator: Fachhochschule Vorarlberg, Austria
Project Partners: Tridonic GmbH & Co KG, Austria
Bartenbach Lichtlabor GmbH, Austria
myVitali AG, Switzerland
apollis - Institut für Sozialforschung und Demoskopie OHG, Italy
YOUSE GmbH, Germany

The project (Guiding Light) no AAL-2011-4-033 is funded under AAL JP
Preface

This document forms part of the Research Project “Ambient Light Guiding System for the Mobility Support of Elderly People (Guiding Light)” funded by the Ambient Assisted Living Joint Programme (AAL-JP) as project number AAL 2011-4-033. The Guiding Light project will produce the following Deliverables:

D1.1 Medical, psychological, and technological framework
D2.1 Applicable hardware components
D2.2 Applicable software components
D3.1 Solution package description
D3.2 Implementation report
D4.1 Communication strategy
D4.2 Stakeholder management report
D5.1 Field test report
D6.1 Report on market analysis
D6.2 Dissemination plan
D6.3 Final business plan
D7.1 Consortium Agreement
D7.2 Periodic activity and project management report
D7.3 Final report

The Guiding Light project and its objectives are documented at the project website www.guiding-light.labs.fhv.at. More information on Guiding Light and its results can also be obtained from the project consortium:

Prof. Dr. Guido Kempter (project manager), University of Applied Sciences Vorarlberg Vorarlberg (FHV), Phone: +43 5572 792 7300, Email: guido.kempter@fhv.at

Hermann Atz, Institute for Social Research and Opinion Polling OHG (APOLLIS), Phone: +39 0471 970115, Email: hermann.atz@apollis.it

Dr. Christoph Nedopil, YOUSE GmbH (YOUSE), Phone: +49-89-21556347, Email: christoph.nedopil@youse.de

Mag. Wilfried Pohl, Bartenbach Light Laboratory GmbH (BLL), Phone: +43-512-3338-66, Email: wilfried.pohl@bartenbach.com

Dr. Heinz Seyringer, Tridonic GmbH & Co GK (TKG), Phone: +43-5572-390-26508, Email: heinz.seyringer@zumtobel.com

Mag. Tom Ulmer, myVitali AG (MVA), Phone: +43-5574-90609-0, Email: tom.ulmer@myVitali.com
Content

1. Introduction .. 6
2. Effective stimuli .. 6
 2.1. Spectrum of lighting stimuli .. 7
 2.2. Light stimuli of Guiding Light ... 9
3. Different software architectures ... 10
 3.1. General architecture .. 10
 3.2. Alternative software architectures ... 12
4. Data base model .. 13
 4.1. Data flow .. 13
 4.2. Data structure .. 15
5. Different light control systems .. 18
 5.1. Light management systems ... 18
 5.2. Light bus protocols .. 20
6. Mobility monitoring ... 22
 6.1. Comparing body worn sensors with room sensors .. 22
 6.2. Calculating activity from PIR sensors .. 27
 6.3. Primary enduser GUI for mobility monitoring ... 29
 6.4. Alternative concepts of motion data analysis .. 30
7. Daily structure monitoring .. 32
 7.1. Relevance of daily structures .. 32
 7.2. Approaches for data analysis .. 33
 7.3. Calculating presence from PIR sensors .. 37
 7.4. Calculating mobility from PIR sensors ... 39
 7.5. Secondary enduser GUI for mobility monitoring .. 40
8. Mobility aids ... 43
 8.1. Mobility patterns of the elderly .. 43
 8.1.1. Changing frequency .. 43
 8.1.2. Changing purposes ... 45
 8.1.3. Changing modal split ... 45
 8.1.4. National and cultural difference ... 47
 8.1.5. Future mobility ... 48
 8.2. Existing mobility services for the elderly ... 49
 8.2.1. Examples of evaluated measurements and mobility services 49
 8.2.2. Further mobility enhancing services .. 50
 8.3. ITS (Intelligent Transport Systems) .. 52
 8.3.1. Special transportation and accompaniment .. 52
 8.4. Study of needs – Guiding Light test persons .. 53
 8.4.1. Mobility and modal split ... 53
 8.4.2. Trip information and feasible services .. 56
 8.5. Connection to Guiding Light .. 58
 8.6. Outlook .. 59
References .. 60
List of figures

Fig. 1. Application scenarios and possible actuator and sensor expansions 6
Fig. 2. Example for two basic types of lighting stimuli within Guiding Light 9
Fig. 3. General architecture of building management system (Source: Wikipedia) 10
Fig. 4. Wireless solution to integrate Guiding Light in a building management system 11
Fig. 5. Cable based solution to integrate Guiding Light in a building management system .. 12
Fig. 6. Solution for connecting with existing building management system 13
Fig. 7. General data flow within Guiding Light .. 14
Fig. 8. Data management within Guiding Light .. 15
Fig. 9. Different data management approaches within Guiding Light 16
Fig. 10. Switching on and off light in relation to indoor light level 17
Fig. 11. Simplified illustration of a light management system .. 18
Fig. 12. Light management system from Zumtobel (www.zumtobel.com) 19
Fig. 13. Light management system integrated in building automation 20
Fig. 14. Building management system as developing framework at laboratories of FHV 20
Fig. 15. Comparison of 1..10V and DALI topology (Source: Osram) 21
Fig. 16. Integration of DMX in a lighting installation (Source: Osram) 22
Fig. 17. Data flow for automatic data management .. 23
Fig. 18. Comparison of data form body worn sensors (ACCEL) and room sensors (PIR) for detecting motion/activity ... 24
Fig. 19. Data flow for ambient mobility monitoring ... 25
Fig. 20. Mobility data from four sectors of a single PIR-sensor 26
Fig. 21. Motion patterns of two seniors for one week in three different rooms of their flats and corresponding activity measures per day/night ... 27
Fig. 22. Different variants of single PIR sensor triggerings .. 28
Fig. 23. Different variants of summarizing single PIR sensor triggerings 28
Fig. 24. Activity monitoring from Suunto (www.suunto.com) 29
Fig. 25. Actigraphy application from Actigraph (http://www.actigraphcorp.com) 30
Fig. 26. Different activity monitoring applications for iPhone 30
Fig. 27. Signals from three different motion sensors within an apartment 31
Fig. 28. Restricting sensitive range of a motion sensor ... 31
Fig. 29. Interpretative logic of overlapping sensitive range of a motion sensor 32
Fig. 30. Results from Harmonised European time use survey (Eurostat, 2007) 32
Fig. 31. Age dependent time of inactivity during a day (prototypical view from Staedt & Riemann, 2007) ... 33
Fig. 32. Activity profile of the 4 PIR-sectors in living room for sundays averaged over 6 month ... 34
Fig. 33. PIR sector with maximum activity in a time slot of 15 minutes. A comparison between a typical Sunday and Tuesday (averaged over 6 months) show a shift in sleep time by have an hour earlier during weekdays 34
Fig. 34. PIR-sector with maximum activity in a time slot of 15 minutes. A comparison between summer and winter periods shows a shift of sleep-time by 15-30 minutes earlier in winter ... 35
Fig. 35. Likelihood of presence within sleeping room (one week) 35
Fig. 36. June to December 2012 - room zones with most frequent PIR triggerings per hour.

Fig. 37. State-diagram for presence/absence detection. Door: a door contact event occurred, motion1: a motion event of the detector closes to the main entrance occurred, motion2: a motion event of other detectors occurred, timeout: after a specific amount of time of no events this route is taken.

Fig. 38. Two different mobility patterns of a person during 24 hours of a day (starting with 00:00) applying means values for a time period of two months.

Fig. 39. Example for visualizing daily structures (Source: www.BeClose.com)

Fig. 40. Screen for expert user GUI Version 1.

Fig. 41. Screen for expert user GUI Version 2.

Fig. 42. Screen for expert user GUI Version 3.
1. Introduction

The aim of our project is to develop, tentatively implement and empirically evaluate an intelligent lighting assistance for maintaining and improving indoor and outdoor mobility of older people at different stages of ageing process and to prepare it for market launch. As far as mobility of elderly is concerned, this goal is to be achieved by enhancing their spatial and temporal orientation by means of lighting wayguidance system.

To this end we will develop an intelligent control loop for home automation, that supports navigation, consolidates personal circadian rhythm, and individually directs attention in a timely manner through automatic light quality and quantity variations and other ambient stimuli coding. We not only expect to achieve more directed mobility with the assistance of guiding light but also a better structuring of activities of daily living within ageing population. Combined with a distributed information system for feedback about nature and extent of individual mobility, the system will likely lead to better care services too.

2. Effective stimuli

We would like to achieve mobility improvement by influencing temporal and spatial orientation of older persons through ambient stimuli. This is being done with supplying results from sensor data analysis to intelligent adaptation methods. These methods consist of data mining procedures, which automatically try to find the optimal state of electronical systems in older person’s home in a timely manner. This means, that lighting wayguidance...
system will automatically redefine control parameters of actuators within a home automation system.

Generally, there exist many actuators within a home automation system, which can serve as ambient stimuli. Potential actuators are lighting solutions from a wide range (e.g. direct/indirect surface-mounted and pendant luminaires, light lines for emphasizing contours, miniaturized shelf lighting, recessed floor luminaires, table lamps and uplighters, emergency lighting as well as wall-mounted navigation sign luminaires), motor-controlled facilities (e.g. blinds, furnishings, doors, and locks), airconditioning equipment and all home facilities with communication interfaces. Finally, switchable power sockets could serve as actuators so as to automatically turn on and off other electrical devices (e.g. radio).

2.1. Spectrum of lighting stimuli

We decided to exclusively use lighting actuators as ambient stimuli for Guiding Light system, because there are a lot of lighting design options, which can be used for intelligent lighting assistance and improving mobility of older people at different stages of ageing process. Lighting design includes creating the optimal lighting for different daily activities while keeping in mind issues of visibility, biological effects, safety, and cost (Figuerio et al., 2011; Hidayetoglu et al., 2012, Marianne et al., 2011; Veitch & Galasiu, 2012; Wardono et al., 2012). In order to influence spatial and temporal orientation by means of lighting wayguidance system we have to select from the following options:

<table>
<thead>
<tr>
<th>Room lighting with different light intensity and light color temperature.</th>
<th>Room zones with different light intensity and light color temperature.</th>
<th>Different parameters of artificial light in relation to daylight.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Illuminating objects to remember for a specific daily action.</td>
<td>Accentuating staircase handrails to support directed locomotion.</td>
<td>Signaling by means of background lighting at specific points of interest.</td>
</tr>
<tr>
<td>Eye-catching light zones depending on the time of day.</td>
<td>Highlight some furnishings.</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----------------------------</td>
<td></td>
</tr>
<tr>
<td>Facilitating delimited light zones within a room to extent stay within this zone</td>
<td>Luminaires following staircase in order to prevent falls or minimize fear about falls.</td>
<td></td>
</tr>
<tr>
<td>Presenting light path within room to support directed locomotion.</td>
<td>Continuous row luminaire occasionally switched on for orienting support.</td>
<td></td>
</tr>
<tr>
<td>Lighting up medicine cabinet for remembering medication use.</td>
<td>Continuous lightings for directing angle of view resp. gaze.</td>
<td></td>
</tr>
<tr>
<td>Lighting up shoe closet for remembering to make a walk.</td>
<td>Digital light projector systems projecting information or symbols onto walls.</td>
<td></td>
</tr>
<tr>
<td>Sel-illuminating table as an attracting light stimulus.</td>
<td>Illuminated information signs uses symbolic communication.</td>
<td></td>
</tr>
<tr>
<td>Supporting selective attention by object illumination.</td>
<td>Light signals giving feedback oor light cues.</td>
<td></td>
</tr>
</tbody>
</table>
Changing focus of interest by shining on table surface.

Once more we decided to restrict the quantity of optional stimuli that will influence mobility of older people to temporal and spatial distribution of light intensity and light color temperature, since the management of these light control signal for all luminaires in all rooms of an apartment will become quite complex and proving evidence for causal effects by means of systematic empirical studies will become extremely difficult.

2.2. Light stimuli of Guiding Light

The two basic types of lighting stimuli are (a) zonal lighting, which concerns to illuminating restricted areas within rooms of an apartment where inhabitants typically perform specific daily activities at specific time of day and (b) ambient lighting, which concerns to the remaining living space where inhabitants perform various daily activities at variable times of day and pass through the apartment. Zonal lighting and ambient lighting differ from each other by means of light intensity and light color temperature of luminaires because both types of lighting stimuli can appear at the same time.

Fig. 2. Example for two basic types of lighting stimuli within Guiding Light.
3. Different software architectures

3.1. General architecture

Guiding Light system will consist of modular and open architecture makes it easy to integrate it in building management systems and general assistive environments as a stand-alone product as well as an add-on or option for already existing systems. A building management system is a computer-based control system installed in buildings that controls and monitors the building’s mechanical and electrical equipment such as lighting, ventilation and power systems. It consists of software and hardware.

The topology of most building automation networks consists of a primary and secondary bus which connect high-level controllers (e.g. from Beckhoff) with lower-level controllers, input/output devices and a user interface. The primary and secondary cable based bus can be KBX/EIB or DALI. Some newer building automation and lighting control solutions use wireless mesh open standards such as EnOcean. Most controllers are proprietary. Each company has its own controllers for specific applications.

Most building management systems can provide interoperability, allowing users to mix-and-match devices from different manufacturers, and to provide integration with other compatible building control systems. Inputs and outputs are either analog or digital. Analog inputs are used to read a variable measurement. A digital input indicates if a device is turned on or not.

Fig. 3. General architecture of building management system (Source: Wikipedia).
Within our project we have to build on a very flexible solution, because Guiding Light should be open to different building management systems. We distinguish between cable based solution and wireless solutions and will use EnOcean in latter case. The EnOcean technology is an energy harvesting wireless technology that combines micro energy converters with ultra low power electronics and enable wireless communications between batteryless wireless sensors, switches, controllers and gateways.

Sensors and actors can be connected via an EnOcean gateway (e.g. Thermokon STC-Ethernet) with central processing unit. Lightings might be DALI-lightings. Light intensity and light color temperature of these lightings are variable within a predefined range. The range for ambient lighting will be 0-300 Lux and 2200-4000 Kelvin. The range for ambient lighting resp. task lighting will be 0-2000 Lux and 2200-4000 Kelvin. Sensors are motion sensors (e.g. Thermokon SR-MDS BAT) and light intensity sensors (integrated within motion sensor). Light switches are communication via EnOcean too. We have to check, whether we will be able to log manual use of light switches. At the entrance we implement light sensitive barriers. Since we did not find EnOcean sensitive barriers, we might use door EnOcean switch contacts.

Fig. 4. Wireless solution to integrate Guiding Light in a building management system.
For data communication between EnOcean and DALI-EVGs within lightings we have to search for a new data interface. Maybe, Ökoled (www.oekoled.at) can provide such an interface. We will use a WLAN-router for connecting end user interface (e.g. handheld computer) with Guiding Light system. End user interface will be used for mobility data visualisation and for presenting questionnaires during the filed test phase.

3.2. Alternative software architectures

In some cases we would prefer cable based bus systems, e.g. when radio technology does not work properly due to high data transmission or radio waves are not be transmitted. There are two relevant bus protocols: KNX EIB and DALI. KNX EIB uses shielded twisted pair cables, through which the signal as well as 30V DC link power is transferred. For data transmission, a balanced baseband signal coding is used with a baud rate of 9600 bits per second. The Digital Addressable Lighting Interface (DALI) is an interface definition in building automation for the transmission of control signals for lighting devices. DALI ballasts are wired in parallel and linked with one another via the controller.

![Diagram](image)

Fig. 5. Cable based solution to integrate Guiding Light in a building management system.

In some cases apartments of older people are already integrated in an existing building management system. In this case we have to implement an interface between existing building management system and our light wayguidance system. Such an interfaces is ADS (Automation Device Specification), a platform and device independent protocol for reading
and writing of data and for commando transmission from Beckhoff. For Guiding Light we would prefer buildings without an existing building management system.

![Diagram of data flow and connection with existing building management system](image)

Fig. 6. Solution for connecting with existing building management system

We have to check the localisation of our 24 hours light control signals within a building management system. Possibly this could be within controller for light management (e.g. Netlink), within electronic ballast for lighting devices or as part of the intelligent control algorithm. It has to be checked what kind of signals can be transferred via EnOcean protocol, since this is a new kind of data transmission. If 24 hours light control signals are localized on myVitali server, home automation system of Leit3 GmbH (www.leit3.com) will be used.

4. Data base model

4.1. Data flow

Most of our data will be recorded within the apartment of older persons. Many of them concern to the mobility of older persons and to the indoor lighting conditions within the
apartment. Recorded data are used for control algorithm of lightings within the system and for giving feedback on mobility to inhabitants (older persons) and care givers (e.g. family members, care services). Within apartment data will be transferred via building management system or light management system (see chapter 5).

![Fig. 7. General data flow within Guiding Light.](image)

Some apartments will have a building management system with internal data server and some apartments will have no internal data server. The latter apartments will transfer their data to cloud server. On Guiding Light server we will aggregate data derived from different apartments with and without data server. Guiding Light server will provide all relevant data for Guiding Light applications designed for requirements of primary and secondary end users.

Data management is designed to run on MySQL server on the same machine as the web server for performance reasons. Communication to the system is done over secure https requests using the JSON data format. The advantages of JSON in contrast to XML based data exchange structures are the better efficiency (less overhead as no tags are used) and easier processing on the client side. Both of these advantages are especially beneficial in the mobile space.
Since we decided to follow a platform independent approach to run applications on Mac, Windows, iOS, Android or any other platform, we will develop web-apps on MVC (Model-View-Controller) architecture executable in an HTML5 compliant Web-browser (e.g. the latest versions of Firefox, IE, Chrome and Safari). Applications will be programmed in PHP, HTML5, CSS3 and JavaScript using Apache web-server and frameworks like Symfony PHP, jQuery and jqPlot in order to be easily maintainable and extendable.

4.2. Data structure

Basically, within an apartment we can select from a big set of sensors and it will depend on light wayguidance principles and cost factors, what kind of sensor information will be used for Guiding Light.

- presence sensor data (motion within room, pressure on furniture)
- entrance sensor data (door contact switches, uni- or bidirectional light barrier)
- position of doors and windows (door and window switches)
- indoor and outdoor brightness sensor data (light intensity)
- status of lightings (on/off, control parameters)
- manual use of light switches (on and off command)
- use of electrical devices (on/off)
- indoor and outdoor temperature
- indoor air quality (carbon dioxide, humidity)
- information about weather (sunlight duration, rain quantity, wind strength)
- electronic recording of the inhabitants vital data (e.g. blood pressure).

We decided to focus on presence sensor data using motion information, entrance sensor data, indoor brightness data, status of lightings, and manual use of switches. These data are required for main principles of Guiding Light system. However, Guiding Light should be able to include other sensor data mentioned above.
Furthermore, we have to prove whether information about weather (e.g. hours of sunshine per day) can be acquired from an external provider. It is important to document with which control parameters lightings are active because we will reprogramme light control curve signal on a regular basis.

Data are transferred by means of cable connections to a building management controller or by means of wireless connections to a building management gateway. Data are stored on different servers, depending on existing building management systems or existing technological conditions at test installations (see following figure).

![Diagram of data management approaches](image)

Fig. 9. Different data management approaches within Guiding Light

Lighting control systems typically provide the ability to automatically adjust a lighting device's output based on chronological time (time of day), occupancy (presence of persons), daylight availability (indoor light level), events or alarm conditions, and program logic. Typically, light control is scene-based and/or daylight-dependent and presence-dependent according to requirements of inhabitants.

There exist several control strategies. Scheduling is the strategy of tuning lights on or off according to need or program. Manual scheduling involves switching by building occupants, while automatic scheduling may include time switches, occupant sensors, photocell switches and other means of switching lights by automatic control devices. Scheduling can be implemented effectively with switching controls. Switching technology is inexpensive and do not require special expertise to install.
Dimming is reducing power to electric lights in accordance with the exact lighting needs of the inhabitants and their daily activities. Dimming is in general a more expensive daylighting control technology (when including the cost of dimming ballasts) in comparison to switching and is ideal in applications where occupants are engaged in small motion activities (sitting, reading, typing). In an old installation (where there are no dimming ballasts) switch is more appropriate even though the light changes caused are more abrupt.

We decided to use both strategies: switching and dimming. This includes timer programmed switching on and off lightings as well as switching on and off in relation to presence and indoor light level (see following figures). We will use dimming parameters from predefined 24 hours light control signal curve to provide different light intensity and light color temperature at different time of day.

![Daylight Illuminance Graph](image)

Fig. 10. Switching on and off light in relation to indoor light level.

For control strategy of Guiding Light we need information about dim levels of lightings (probably warm and cool light luminaires) for 24 hours a day, information about motion control and minimum light level (for switching light on and off in relation to presence and light level), and information about time control for automatically switching lights on and off according to a predefined time schedule.

Within the Guiding Light individual lighting assistance will be implemented by intelligent control loops in room automation, where results from continuous mobility monitoring are used for reprogramming 24 hours light control signal curves. For developing intelligent control algorithm we have to define input and output signal as well as methods for data reasoning and switching as well as dimming logic. Input signals will be mobility parameters such as amount of activity at specific time within individual and daily structures. Output
parameters will be light intensity and light color temperature of all lighting groups within an apartment. Switching and dimming logic will depend on selected methods for data reasoning. For this reason we will search for adequate methods from artificial intelligence area.

5. Different light control systems

5.1. Light management systems

With indoor light management systems one can schedule the light operations in any area within the building, or monitor occupancy patterns and adjust lighting schedule as required. The following figure shows the structure of a light management system with one controller, often a microcontroller that has some embedded control algorithm.

External devices, such as sensor to detect light level or occupancy and timing device for scheduling are connected to the controller. With user interfaces - a button, display or even a computer software - the user can interact with the system. The controller then sends signals to ballasts and actuators that control the lights. Often light management system is integrated in building automation.

![Light Management System Diagram](image)

Fig. 11. Simplified illustration of a light management system.

For Guiding Light we need an open and highly flexible light management system, which enables the integration of different field bus systems like EIB/KNX, DALI, EnOcean, Beckhoff ADS, Ether-CAT, as well as data transmission via ZigBee, EnOcean, TCP/IP, and RS232 to a wide range of sensors and actuators.

It should be possible, that I/O-devices are combined with Central Processing Unit (CPU) in different modes. With a so called system-mode system should operate as client-server system with several peripheral computers. Development of Guiding Light monitoring and control algorithms is done in this mode. On the other side a so called easy-mode should
not require a peripheral computer but monitoring and control algorithms should be preprogrammed and loaded with a default set of parameters on an embedded controller.

Finally, we should be able to develop customized extensions based on software development framework of light management system (e.g. DALI control interface) and to adapt features using an openly documented JSON-interface for handling and visualization applications.

We analyzed several commercial light management systems and found at least two systems which fulfill all our requirements: Litenet from Zumtobel and next.manager from AutomationNext. The following figures show the general topology of both systems.

Fig. 12. Light management system from Zumtobel (www.zumtobel.com).

The Zumtobel control system is based on a field bus supporting free topology wiring, which ensures that future expansions or adjustments of the system can be made in an easy and cost-effective manner. All luminaires are individually controlled using a digital DALI signal or Luxmate bus, the scope ranging from a minimum level of 1-3% to 100%. All control modules feature the service of monitored outputs for localising malfunctions.

The AutomationNext control system integrates a wide variety of building automation devices and systems, consolidating these into one unified and easy-to-use platform. The next.bms provides a centralized configuration and visualization with easy operability and which undertakes the system-wide automation in conjunction with several next.controller/pro systems. The hardware independent next.manager controls the configuration and administration of all connected next.controller/pro systems.
We decided for primarily use of light management system from AutomationNext, because this system is open for further sensors and actuators which are not restricted to light management. This scaling might be necessary, if we will expand the function of our intelligent control algorithm to other stimuli such as HVAC, sound etc. FHV has installed a test equipment in his laboratories and has already developed some plugins for this system.

Fig. 13. Light management system integrated in building automation (www.automationnext.com).

Fig. 14. Building management system as developing framework at laboratories of FHV.

5.2. Light bus protocols

Concerning light management protocol we are analysing DALI, 1..10V, DMX, and EnOcean. One main decision criteria are the cost factors.
DALI (Digital Addressable Lighting Interface) is a non-proprietary interface standard for dimmable electronic control gears, offering greater functionality and greater ease of use. A maximum of 64 DALI ECGs can be controlled with a high degree of flexibility via a two-wire control line individually or in Broadcast mode and in up to 16 groups. Switching and dimming are handled via the control line. There is no need for a relay. Important information such as the lamp status is stored in the control gear and is available to the controller.

1..10V interface controls lighting via an interference-proof dc voltage signal of 10V (maximum brightness; control line open) to 1 V (minimum brightness; control line short-circuited). The control power is generated by the ECG (maximum current 0.6 mA per ECG). The voltage on the control line is isolated from the power cable but is not at safety extra-low voltage (SELV). ECGs connected to different phases can be dimmed via the same controller. Modern dimmable ECGs with 1...10 V interfaces in combination with the appropriate controllers and sensors provide the basis for simple and cost-effective lighting systems. Control gear and controllers are connected to one another via a pooled two-wire control line.

Fig. 15. Comparison of 1..10V and DALI topology (Source: Osram).

DMX stands for “Digital Multiplex” and is a digital communication protocol for lighting control. DMX is capable of controlling up to 512 lighting channels simultaneously. The data rate is an impressive 250 kilobytes per second. This means that it can handle scenarios in which a large number of RGB light points and dynamic high-speed color changes are
needed with excellent results. Compared with conventional lighting control systems, DMX is therefore the first-choice technology for such challenging applications.

![Fig. 16. Integration of DMX in a lighting installation (Source: Osram).](image)

Finally, EnOcean is batteryless radio technology. The sensors take their energy from their immediate surroundings – tiny changes in movement, pressure, light, temperature or vibration are enough to transmit radio signals. The maximum range of the signals is 30 meters in buildings and 300 meters outdoors. EnOcean transmits the signals on the license-free 868 MHz frequency band.

We decided to use DALI protocol and EnOcean protocol for controlling lightings within the Guiding Light system.

6. Mobility monitoring

6.1. Comparing body worn sensors with room sensors

We conducted a pre-study in order to analyze advantages and disadvantages of manually mobility data recording, automatic data management, and ambient mobility monitoring. The latter approach combines unobtrusive data recording and automatic data management.
Initially test persons monitored their activity parameters with body worn sensors for which they had to document the recorded data manually by their own. In this case, data recording and data documentation was performed only sporadic by test persons. There were time intervals where they intensively used activity monitoring but there were also long time intervals where did no data recording or data documentation.

Fig. 17. Data flow for automatic data management.

Data quality became better with introducing an automatic data management. Test persons received new measuring devices (smartLAB-walk), which are automatically transferring measured data to a gateway inside the apartment via ZigBee. Test person used this body worn measuring device for activity monitoring differently (see ACCEL data lines and bar charts in the following figure). While one person used monitoring device almost each day during a week, another person used monitoring device very sporadic. During this test phase we had some problems with radio transmission for automatic data management.
During the test phase where test person used body worn sensors, we also used embedded room sensors (Merten KNX Argus PIR-sensors) within the apartment of test persons for activity monitoring. In both cases recorded data were documented automatically. If we compare data from both systems in the figure above, we can see big differences in data quality. For 168 hours of observation time we received information about 106 hours respectively 121 hours with room sensors (that is 68 % of observation time). With body worn sensors we received only information about 40 hours respectively 6 hours (that is 14 % of observation time). This is why we decided to use embedded room sensors for mobility monitoring within our project.
The use of sensors in buildings should be possible with normal techniques and at relatively low cost. In our example each room consists of a motion detector with a detection angle of 360°. The 360° detection angle is divided into four sectors with independent passive infrared sensors for each sector. The sectors are 90° each and can be parameterized individually. For each movement sensor the range, timing, and the sensitivity can be set for each block via parameters.
The following figure shows motion patterns for one week in three different rooms of senior’s flat (all four sectors per room) and corresponding overall activity measures per day/night on the top. Activity measures for day and night result from aggregation of all sectors of motion sensors in living room, sleeping room, and bathroom/toilet room of older persons within relevant time period. Night time period has been defined starting at 10 o’clock p.m. and ending at 5 o’clock a.m., following by day time period up to 10 o’clock p.m. The first person (apartment no. 5) has been diagnosed with temporal disorientation (following Mini-Mental-State Examination). The second person (apartment no. 6) shows normal spatio-temporal orientation. According to this diagnosis the overall mobility profile of the first person shows less overall intensity and more night activity in relation to day activity than the second person. Second person shows well structured history in activity in sleeping room with highest motion intensity in the morning.
Both persons spend, however, nearly the same time of day inside their apartment. Additional mobility monitoring is performed in the form of trend analysis, pattern discovery, and association rules which is applied to data obtained from unobtrusive sensors to capture comprehensive information about what, where and when residents are performing different activities of daily living. Results from continuous monitoring are used for intelligent light control system and to derive certain measured values of individual mobility (e.g. general motility, dynamics of body movement, and distances in indoor as well as outdoor locomotion).

6.2. Calculating activity from PIR sensors

In our context activity concerns to body motion. Normally, PIR sensor signal is set to "true" immediately after detecting body motion, and is set to "false", if no body motion is detected for one second. There are different algorithms for handling these PIR sensor data. Assuming a room zone with three sectors respectively three PIR sensors and four measurement time points the PIR sensors might be triggered differently at each measurement time point. Let us assume triggering sector 1 and sector 2 at t1, sector 1 to sector 3 at t2, sector 2 at t3 and not triggering at t1. Now we can describe these triggerings...
with different activity patterns. In variant A it is the sum of triggerings for each measurement time point. In variant B the sum of triggerings for each measurement time point divided by the number of triggerings. In variant C we identify activity with value “1”, if there is any triggering within the three sectors of a measurement time point.

Variant A

<table>
<thead>
<tr>
<th>Sector 1</th>
<th>Sector 2</th>
<th>Sector 3</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>x</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1,5</td>
</tr>
</tbody>
</table>

Variant B

<table>
<thead>
<tr>
<th>Sector 1</th>
<th>Sector 2</th>
<th>Sector 3</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>x</td>
<td></td>
<td>2/3</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td>3/3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x</td>
<td>1/3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,5</td>
</tr>
</tbody>
</table>

Variant C

<table>
<thead>
<tr>
<th>Sector 1</th>
<th>Sector 2</th>
<th>Sector 3</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>x</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,75</td>
</tr>
</tbody>
</table>

Fig. 22. Different variants of single PIR sensor triggerings.

Summarizing single PIR sensor triggerings might be performed again in two different ways. First, all PIR sensor triggerings can be summed for a specified observation period, building an amount value of triggerings. This variant is like counting movements detected within a observation period. If no movement is detected within a time sampling interval of one second, this is ignored by this kind of parametrisation.

Fig. 23. Different variants of summarizing single PIR sensor triggerings.
Second, we can calculate a mean value of all triggerings per time sample interval within an observation period. If no movement is detected within a time sampling interval of one second, this is taken into consideration by this kind of parametrisation. By comparing the results of amount value and mean value for all three variants described in figure 22, we see relevant differences in the result.

We found, that amount value of variant 3 is the best kind of activity parametrisation. This is, why room zones may have different numbers of PIR sensors respectively sectors (preferably variant 2 and variant 3) and why higher number of triggerings does not mean more activity without fail, since a person may trigger more than one PIR sensor with one single movement (preferably variant 3).

6.3. Primary enduser GUI for mobility monitoring

For Guiding Light we will give feedback about individual activity resp. mobility to end users. For this purpose we have to develop an easy to use and easy to understand software application that automatically receive information from respective sensors and visualizes the results from data analysis. In order to make a decision for possible software development we searched for commercial applications, which are available for activity monitoring. There are a lot of such applications available. Some ideas, how our application might look like are shown by means of some examples in the following figures.

Fig. 24. Activity monitoring from Suunto (www.suunto.com).
The commercial applications we found show very complicated representations of different activity parameters. This might be too complicated for older persons as end users. Therefore, we decided to develop an application with an easy to use and easy to understand information visualization for primary end users only showing a single overall parameter of mobility for freely selectable time intervals.

6.4. Alternative concepts of motion data analysis

If we look on signals from passive infrared motion/presence sensors (PIR-sensors) within an apartment for several days, we can see that more than one sensor indicates presence at the same time. However, this is not surprising, because a person can stay at different
room zones at the same time of day but at different days. The following figure shows that a person may stay during the time interval between 10 a.m. and 15 p.m. in the bathing room, the sleeping room or the living room. At low temporal and spatial solution of monitoring it seems, that the probability to be present in a two different rooms at the same may be nearly the same.

Fig. 27. Signals from three different motion sensors within an apartment.
Furthermore, we will receive motion or presence information from more than one sensor at the same time because the sensitive range of PIR-sensors might overlap each other. This might be problematic, if we want to refer activity of a person to specific room zones. In this case, we will check solutions to restrict the sensitive range of a motion sensor.

Fig. 28. Restricting sensitive range of a motion sensor.

In some cases we can use information about overlapping sensitive range of a motion sensor in order to define more room zones than PIR-sensors installed within an apartment. The following figure shows overlapping and non-overlapping zones. If we combine information from all sensors, we are able to detect presence within 13 different room zones.
7. Daily structure monitoring

7.1. Relevance of daily structures

The harmonised European time use survey shows that people normally have a well established daily structure because they are engaged in several activities during specific times of a day (see following figure).

Fig. 30. Results from Harmonised European time use survey (Eurostat, 2007).
Many older persons have problems in structuring their daily life. They only get up at noon, spend a lot of time in front of the television or on the computer, and meet friends or family members less frequently than in the past. In this manner, one easily allows the entire day to pass by without accomplishing or achieving anything. For some who are affected, this leads them long-term to hardly leaving the house at all, and to having fewer and fewer social relationships. Loss in daily structure at an advanced age often leads to relocation into assisted living facilities (Schäper et al., 2010). Day-structuring measures are highly significant interventions within care activity for older people (Greving & Remke, 2012).

7.2. Approaches for data analysis

Improving mobility of older persons by means of Guiding Light also includes a better structuring of activities of daily living within ageing population. To see if we could deduce daily structure parameters from the logged data, we evaluated data collected from PIR-sensors over a period of six month. The following figure shows a daily activity profile of four PIR-sectors in the living room on sundays averaged over 6 month. The x-axis shows the time whereas the y-axis the number of individual activations in a sector per 15 minutes time slot. One can clearly see the lack of activity from 11:45 to 12:15 hinting at a lunch break.
The following figure shows a daily activity profile for two typical days for one apartment. The maximum activity distribution in the separate sectors of the apartment indicate different daily actions on weekends (left side) and weekdays (right side). The x-axis shows the time whereas the y-axis shows the sector-number. Data for this chart has been aggregated over a period of 6 month.

Fig. 32. Activity profile of the 4 PIR-sectors in living room for sundays averaged over 6 month.

Fig. 33. PIR sector with maximum activity in a time slot of 15 minutes. A comparison between a typical Sunday and Tuesday (averaged over 6 months) show a shift in sleep time by have an hour earlier during weekdays.

Another interesting question was if there would be some detectable change within the daily activity profile between summer- and winter-months, as this is especially relevant in an
application using light. The following figure shows a shift in sleep/wake times during two summer months and two winter months, meaning this system can in fact be used for detecting changes to the daily structure of a person, without the need for the person to wear or maintain any sensors at all.

Fig. 34. PIR-sector with maximum activity in a time slot of 15 minutes. A comparison between summer and winter periods shows a shift of sleep-time by 15-30 minutes earlier in winter.

If we compare the likelihood of presence within sleeping room for two persons, we can detect important individual differences. We can illustrate this in the following figure, where this likelihood is showed for two persons and for one week observation time. While person one shows a clear circadian rhythm, the sleeping time of person 2 is displaced and shows no clear wakeup time in the morning. Furthermore, person 2 might sleep some times in the afternoon too.

Fig. 35. Likelihood of presence within sleeping room (one week).

If we look at the sensor sector data within an apartment of a person for six month, we can see a clear daily structure, independently from the differences of week day and seasons mentioned above. The green areas show the time intervalls where inhabitants normally stay within this area of a room.
Fig. 36. June to December 2012 - room zones with most frequent PIR triggerings per hour.

Among the parameters that can be deduced from activity data we recorded in this field study are sleep-/wake times (indicator of circadian rhythm), the time at which various sectors of an apartment feature the most presence (and therefore might be candidates for special light treatments), nightly actions like visiting the toilet or getting something from the kitchen, or the time at which a participant leaves the apartment or comes back (e.g. for getting lunch), and many more.

Despite these promising results, there are two obvious major drawbacks of PIR-sensor based approach: First, it’s only suitable for single person households without pets. Any additional heat-sources would cause additional actuations not related to the main person’s actions. In our case, one workaround for this could be to automatically track situations where more than one person is present (e.g. by light barriers that allow for people counting at the entrance, or by observing other room parameters like CO2 levels) and exclude those from data evaluation.

Second, activity that’s happening outside the apartment that might have a big effect on a person’s health state cannot be tracked in this way. One way to overcome this issue would be to have optional wearable accelerometers that could deliver additional input when worn, but with the core system remaining still functional without them. In the Guiding Light project, we intend to use both solutions to these two drawbacks mentioned here.
Our pre-studies show, that we are able to detect individual daily structure within private residence by implementing standard passive infrared (PIR) presence sensors within rooms. Knowing about the individual daily structure of a person we are able to install a room lighting system, which follows the individual needs of an inhabitant. In the next phase we are able to discover whether our zonal and ambient lighting installation can help strengthening individual daily structure or is able to change structure of daily routines if required. Within our project we will evaluate whether these assumptions are valid in practice.

7.3. Calculating presence from PIR sensors

In our context presence corresponds with the statement that a person either stays in different room zones or outside of the apartment. For presence detection we will use commercial PIR sensors within our project. PIR sensors are primarily built for detecting presence of people within a well defined area of space. Normally, PIR sensors are used for switching light on in case of presence. Nearly any area where people only occasionally walk or move through and which is not required to be continuously lit, could benefit from the installation of a PIR sensor. But this is not the one and only use case for PIR sensors.

All PIR sensors detect changes in infra-red radiation, in the form of heat emitted by a number of bodies including people. In a standard use case each relevant room zone is constantly monitored by one or more PIR sensors. When a person (or other heat source) enters such a zone, the level of infra-red radiation in that zone increases. This change is detected and processed by the sensor, switching on, for example, the connected lighting and starting the in-built ‘timeout’ process. Providing the heat source (presence of a person) continues to move in detection zone, the PIR sensor will keep processing the changes in infra-red radiation and the lighting, in this case, will stay on. If a person stands still in the field of view or moves out of the detection area, the sensor will not detect any changes in infra-red radiation between the zones and the lights will go out after the ‘timeout’ period is complete.

Basically, we decided to localize presence of persons in those room zones where PIR-sensors are triggered by body motion. In some cases, however, this interpretation of presence is not correct because PIR-sensor does not send a presence telegram if a person stands still in the field of view for a prolonged period of time. Therefore we have to implement an extended logic for presence detection. This logic could be that, for example, within sleeping zone respective PIR sensor(s) are triggered at the moment t1 but with no more triggerings until t130. In this case we will assume presence of person within sleeping zone for t1 to t130. It might be irrelevant if a sensor from another room zone than sleeping zone is triggered at t130 (normally again PIR sensor form sleeping zone will be triggered).

We will apply this logic to PIR sensors of all other room zones (e.g. at t1 there might be a PIR sensor trigger within kitchen zone and at t130 t1 there might be a PIR sensor trigger
within living zone) but only in such cases where an additional logic for data analysis does not indicate that occupant is staying outside of the apartment. For the latter logic, a door contact and two motion detector sections are used: the door-contact attached to the entrance-door into the apartment, a motion-detector located near the entrance area, and all other motion-detectors from the apartment grouped together. This logic in the discrimination of whether there is just no movement inside an apartment or if there are actually no persons present. The internal logic of this node is implemented using a simple state machine (see next figure).

![State-diagram for presence/absence detection. Door: a door contact event occurred, motion1: a motion event of the detector closes to the main entrance occurred, motion2: a motion event of other detectors occurred, timeout: after a specific amount of time of no events this route is taken.](image)

In our standard use case there is only one person present within an apartment. This means that we will focus on single person apartments within our project. Nevertheless, at some times there will be more than one person within the apartment (e.g. if there are visitors). This mean we have to discriminate if there are more then one persons in an apartment. Our logic for data analysis observes if there are more than one motion detection sectors active at the same time. The more often the output is switched to on, the
higher the chance of more people being present in the apartment. The clearer the sections of the motion detectors are separated, the better the results for this logic will be. Therefore it’s recommended to only use clearly separated sectors for this logic. Note that this logic will only give a hint on the presence of multiple persons in an apartment. If all persons are within the same motion detector sector, this logic will not be able to tell if there are multiple persons present. Also if sectors are not clearly separated, one person can invoke multiple motion detectors at the same time.

7.4. Calculating mobility from PIR sensors

In our context mobility concerns to locomotion of people respectively to spatio-temporal parameters of daily living (Wingenefeld, 2011). For most human, the typical mode of locomotion is to walk from one place to the other. Low mobility concerns to people, who stay for the most part of the day within the same area or let’s say room zone. High mobility concerns to people, who change their localization several times a day or let’s say are very often in different room zones respectively are more outside of the apartment.

Taking into consideration the above mentioned logic for PIR sensor data analysis we may assume, that the a single person is present in the room zone with highest triggerings of respective PIR sensor(s). If we focus a single time period of 24 hours a day (starting at 00:00), we will obtain a kind of daily structure for this person. We can apply this logic for a single day but also for summarizing a longer period of time within a 24 hours observation time slot. In the latter case we are calculating mean values for the daily structure. Following this approach we may find different mobility patterns for different periods of time as shown in the following figure.

Fig. 38. Two different mobility patterns of a person during 24 hours of a day (starting with 00:00) applying means values for a time period of two months.
Mobility does not exclusively mean that a person is very often in different room zones. In addition to variability it is equally important to focus directed mobility. In our context directed mobility means that a person consistently follows his individual daily structure respectively spatio-temporal parameters, which is not dysfunctional in accordance to health science. At the beginning of Guiding Light intervention we might define a functional daily structure together with single end user and secondary end user. Thereafter, we observe all kinds deviation and adaption of actual daily structure to commonly predefined daily structure.

The analyses and discussions required parametrisation of mobility have not yet been completed. We will need this kind of parametrisation for effect analysis of Guiding Light within this project as well as feedback for primary as well as secondary end users.

7.5. Secondary enduser GUI for mobility monitoring

Mobility analysis for secondary end users (e.g. experts for care) will receive more detailed information. This application should give insight to current daily structure of older persons as well as modifications in daily structure. At the starting point we searched for similar applications, which are available from other providers. The supply for this objective is very limited but we found an example for visualizing daily structures (see following figure).

![Example for visualizing daily structures](https://www.BeClose.com)

Fig. 39. Example for visualizing daily structures (Source: www.BeClose.com)
In order to build a basis for design decision, we designed three different versions for expert user GUI (see following figures). Version 1 shows time lines of activity for each room zone. Version 2 shows circle charts of activity for each room zone. Version 3 integrates all activity information in one single circle chart. Each version distinguishes between PIR-signals, analysed daily structure from PIR-signals and predetermined daily structure. We will compare analysed daily structure from PIR-signals with predetermined daily structure in order to detect exceptions from the typical daily structure or effects of Guiding Light.

Fig. 40. Screen for expert user GUI Version 1.
Fig. 41. Screen for expert user GUI Version 2.

Fig. 42. Screen for expert user GUI Version 3.
We decided to follow version 1 for expert user GUI, because this version follows familiar visualizations of time lines from different information channels. This decision was made with feedback from care experts who will probably use this application. We interviewed care an case manager, nursing manager, and qualified care personnel by using cognitive walkthrough method with real use cases at Garnmarkt in Götzis. We compared versions of expert user GUI on how easy it is for care experts to accomplish tasks with the application. After walking through typical tasks the test users could state their preference for one of three versions.

8. Mobility aids

According to Description of Work we have planned to verify possibilities to combine Guiding Light with public transport equipment and barrier-free homes directed to social inclusion. Due to time delay in contractual negotiation between the Italian project partner Apollis and his national funding agency, we had to postpone T2.3 within the work package “Intelligent Room Technologies”.

8.1. Mobility patterns of the elderly

Demographic change calls attention to the mobility of the elderly in Europe. As mobility is an important determinant for general health and subjective well-being, keeping the elderly mobile, should be a crucial aim for Europe's societies. In general, mobility declines with age, especially after the age of 75 years (Haustein et al. 2013). However, the situation is not only different between age groups, but also within age groups, depending on physical or mental condition.

Chapter 1 gives a brief overview on the mobility of the elderly, with a focus on Germany, Austria and South Tyrol in Northern Italy. Evaluated mobility services for the elderly as well as those relevant to the project are presented in chapter 2. Chapter 3 verifies the findings of the preceding sections by a small-sized survey conducted in the GUIDING LIGHT test households. Chapter 4 connects the survey results to the GUIDING LIGHT platform, identifying possible services to connect in-door and out-of-house mobility. Finally chapter 5 reflects on findings and gives a final outlook.

8.1.1. Changing frequency

General trends of mobility of the elderly in comparison to younger age groups will be demonstrated by a German study from 2008 “MiD - Mobilität in Deutschland” (BMVI 2008), which is in its findings in accordance with other studies (for overview and further research see MOBILATE 2002, SIZE 2006, SENTRIP 2007, CONSOL 2014). This study analyses data on the mobility behaviour of German household members from zero years on (n=25,922 persons). Not surprisingly the frequency of outdoor mobility is decreasing with higher age. But not only the total amount of trips decreases, also distance and travel-time of trips shorten.
Graph 1: Mobility on a test day by age groups. Source: data from BMVI 2008 illustrated in Haustein et al. 2013: 24

As shown in graph, the total share of mobile persons is stable on a high level until, around the age of 75, the share drops from 89 to 74 percent. This is reflected by the average trip number per day, sinking from more than three trips per day to an average of 2.3 trips per day.

Average travel time (displayed in minutes) decreases strongly not until the age of 75 years and over, whereas the distance travelled per day peaks in the age group of 30 to 39 years. This indicates an age-related change of mobility patterns towards fewer trips with similar amount of time spent but less distance covered. The peak in travel distance coincides with the most labour intensive time period in the age between 30 and 39 years. This is also the time of having young children with rising mobility needs. Exiting this phase of life there is not only a change in travel distance, but also to a change of purposes (see following chapter 1.2).

An 80-year-old may be perfectly mobile whereas a 60-year-old person might not leave the house more often than once a week. Much more than age itself, mobility is determined by age-related occurrence of impairments and limitations. Those changes in the ability of being mobile have an influence on the total trip number and distance. Physical impairments like limited eyesight or limited hearing lead to an adaptation of mobility patterns, but they can be compensated to a certain degree: Trips during darkness are avoided, especially by car drivers. Furthermore trips during rush hour are postponed to low-traffic periods, if possible.

Rising uncertainty and lower self-assessment of abilities in traveling lead to other compensations in mobility behaviour. This is observable in the avoidance of unknown routes to reduce the probability of unexpected situations, avoidance of leaving the house in bad weather
conditions and even more restricting – ice and snow. Physical impairments are found to have a limiting effect on mobility (Bell et al. 2013: 5).

Concerning the total amount of trips made, as well as travel distance, studies show a strong difference between older men and women. Women tend to make lesser trips and travel shorter distances than men (OECD 2011:33).

8.1.2. Changing purposes

But not only the amount and distance of trips is changing, also the purpose of the trips changes. As seen above the exit from the labour market does not significantly change the total trip number. But the disappearance of trips made to or from work changes the distribution of trip purposes. Focusing on the older age groups two major differences are to be noted. Leisure purposes have a share of around 30 percent in working-aged persons. Its importance is even increasing up to nearly 40 percent for age groups over 60 years, as can be seen in graph 2.

Graph 2: Trip purpose by age group in percent of total trips (yellow=leisure time,dark red=shopping,light red=personal business,green=accompained,dark blue=work related,blue=education,light blue=work.

Another major difference between younger and older age groups lies in the share of trips fulfilling daily needs. Shopping and personal errands have a share of around 60 percent of all trips in these age groups, 30 points more than people in the age between 30 to 39 years.

8.1.3. Changing modal split
As trips get shorter and destinations are more and more located in the surrounding environment also the modal split changes (see graph 3). Another major determinant in the modal split of the elderly are changes in car driving habits and the total cease of car driving. Furthermore a strong connection between the ability of independent mobility and the well-being of the elderly is argued in different studies (Haustein 2011, Mollenkopf 2002).

Graph 3: Modal split by age group in percent of total trips (green=public transport, MIV=motorised individual transport as driver, orange=motorised individual transport as passenger, dark blue=bicycle, blue=pedestrian). Source BMVI 2008: 77

In higher age classes the share of older persons travelling with their own vehicle is smaller than in younger age classes. Public transport is becoming more important for those over 75 years. The most important mode of transportation of the elderly is walking, with a share of 32 percent for those aged 65 to 74 years and 38 percent for people aged over 74 years. Cycling is the least chosen mode of transportation, like graph 3 shows for the elderly in Germany. This holds true for most European countries, except Denmark and the Netherlands (OECD 2001: 32, Haustein et al. 2013: 24).

Motorised individual transport has an ambiguous influence on the mobility of the elderly. The availability of a car can empower mobility, e.g. where public transport is not available. Deteriorating health conditions making the driving task harder to fulfil lead to adaptations: The development of physical or mental impairments (e.g. limited response time) is compensated with driving only during daytime and along well-known routes. On the other hand, dependency on car driving can cause a decrease in mobility when driving is restricted or ceased. Also driving cessation is associated with poorer health, however unclear whether driving is ceased because of poorer health, or health declines because driving is ceased and thus mobility declines.
The change to other modes of transport might be particularly difficult if abilities to travel by public transport have to be acquired only in old age (Haustein et al. 2013: 32ff). These difficulties might (still) be less frequent for women, since today's older women travel more by public transport and by foot than by car, whereas men have a higher car dependency (Haustein et al. 2013: 6). But the mobility of women is changing, the share of women holding a drivers licence is increasing, pointing to an equalisation of mobility patterns between men and women (Siren/Hakamies-Blomqvist 2006).

If the physical condition allows, walking is an easily accessible mode of transportation whose importance is rising in higher age classes, as shown in graph 3. Especially if facilities are in walking distance, walking is also a compensation for driving cessation (Haustein 2012).

8.1.4. National and cultural difference

Even though most studies do not focus on cultural or international differences in mobility of the elderly, some findings are available. In general, the modal split differs between countries and cultures, thereby also influencing the general mobility of the elderly. Bas- sett et al. distinguish between active and passive transportation in various countries, however, not distinguishing between age groups (2013). Still their collection of data can give an idea of the mobility environment in which the elderly are situated. Bassett et al. define walking, cycling, and public transportation as active transportation (2013: 795).

Graph 4: Percentage of trips taken by walking, bicycling, and public transportation in countries of Europe, North America, and Australia. Work trips only. ** Walk and bike trips combined for Spain. *** Special focus on short trips for Switzerland (any trip of 25m or more was included). Source: Bassett et al. 2008: 799

As can be seen in graph 4, the share of active transportation is very different in developed countries. In the USA, Australia and Canada the car is clearly the dominant mode of
transportation. This is caused by geographical factors, but also by political and cultural differences (Bassett et al. 2013: 795). Also in European cities the car often has the highest share in the modal split. Table 1 is a collection of mobility data for European cities. Data is provided by the EPOMM (European Platform on Mobility Management), which has collected information about the modal split in European cities. Due to different data sources and reference periods, comparability is limited.

<table>
<thead>
<tr>
<th>reference year</th>
<th>inhabitants</th>
<th>walking</th>
<th>bike</th>
<th>public transport</th>
<th>car</th>
</tr>
</thead>
<tbody>
<tr>
<td>year</td>
<td>persons</td>
<td>percent</td>
<td>percent</td>
<td>percent</td>
<td>percent</td>
</tr>
<tr>
<td>Berlin</td>
<td>2008</td>
<td>3,506,239</td>
<td>30</td>
<td>13</td>
<td>26</td>
</tr>
<tr>
<td>Stockholm</td>
<td>2006</td>
<td>1,889,945</td>
<td>17</td>
<td>1</td>
<td>35</td>
</tr>
<tr>
<td>Vienna</td>
<td>2013</td>
<td>1,741,246</td>
<td>27</td>
<td>6</td>
<td>39</td>
</tr>
<tr>
<td>Munich</td>
<td>2008</td>
<td>1,326,807</td>
<td>28</td>
<td>14</td>
<td>21</td>
</tr>
<tr>
<td>Amsterdam</td>
<td>2008</td>
<td>747,093</td>
<td>20</td>
<td>22</td>
<td>20</td>
</tr>
<tr>
<td>Copenhagen</td>
<td>2012</td>
<td>559,000</td>
<td>20</td>
<td>26</td>
<td>21</td>
</tr>
<tr>
<td>Innsbruck</td>
<td>2003</td>
<td>120,000</td>
<td>27</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>Bolzano</td>
<td>2009</td>
<td>104,000</td>
<td>29</td>
<td>29</td>
<td>8</td>
</tr>
</tbody>
</table>

Table 1: Modal split (percentage of total number of trips per day) in different European cities, source: EPOMM – European Platform on Mobility Management. Source: http://www.epomm.eu/tems/result_cities.phtml?more=1, access 03.03.2015

The usage of public transportation and bicycles varies strongly between different cities. Since in table 1 all age classes are included, the share of cycling as a mode of transportation is not representative for the elderly. In fact, cycling as a mode of transportation is more or less insignificant for the elderly, except in the Netherlands and Denmark (OECD 2001: 32). For the elderly, this is the mobility environment in which their own mobility patterns are shaped.

But also within countries mobility patterns might be different between ethnic groups. Studies find a higher dependency on public transportation for migrants (all age classes), due to limited financial resources. At the same time, research also reveals avoidance of public transport because of language problems and fear of resentments (Haustein et al. 2013: 49). Moreover research indicates that especially female migrants in rural areas are less mobile than male migrants and autochthonous individuals: “[…] the combination of being old, female and immigrant seems to be especially disadvantageous with regard to possibilities of out-of-home mobility” (Haustein et al. 2013: 49f).

8.1.5. Future mobility

It should be recognized that not only mobility is influenced by age (age effects) but mobility
patterns of the older generations to come will be different (cohort effects). Mobility itself is
changing (period effects), due to technical development and social change (OECD 2001:9).
The recent development points towards more rapid transportation systems, taking less time for
farther distance, intervals become shorter and so on. Therefore future older generations might
be more used to rapid transportation. However, rapid transportation is also a challenge for the
elderly.

The transformation of mobility due to new technologies and especially information systems for
mobility cause a shift away from public available information. A shift to personalised information
on private mobile devices is taking place. A prominent example is the disappearance of public
phone boxes. Timetables on bus stops, information about connections, manned information
desks and ticket offices become more and more unnecessary for wide parts of society (in
developed countries). The opposite is true for at least today’s older generations.

Not only will there be a higher share of older people in society within the next decades, the
elderly will also be more mobile. Due to the general change of mobility itself (see previous chapter)
general mobility is higher. The number of women being more mobile and holding more often a
driver licence will probably reduce the existing gender differences in mobility patterns. In
general the number of licence holders will increase and people will keep on driving in old age.

8.2. Existing mobility services for the elderly

After the general descriptions of mobility patterns of the elderly and the identification of
influencing factors, the following chapter gives a brief overview about existing services for the
elderly. All presented systems aim on increasing or securing the mobility of the elderly,
however applying different approaches. As argued in chapter 1 public transportation becomes
important for the elderly. With decreasing abilities to be mobile, taxis and special transport-
ation become the most important mode of transportation (next to walking). There are five
examples of measures evaluated and recognised as good practice to keep up or increase
mobility in older age (taken from Heikkinen et al. 2013) and a complementary list of further
services which have not been evaluated but are relevant to GUIDING LIGHT either because of
their aim or implementation mode.

8.2.1. Examples of evaluated measurements and mobility services

This chapter provides five examples of good practice featuring a specific design for older people
or people with reduced mobility, a close cooperation with end users, and a strong emphasis on
long-term sustainability (see Heikkinen et al. 2013: 6).

“Mobil sein – dabei sein”, Salzburg, Austria

Description: This initiative offers a two day training for older users of public transport,
empowering their abilities to public transport- ation. It is conducted by the provider of
transportation in Salzburg “Salzburg AG”.

guage=dedabei_sein.1312.html&lan
“Mobil sein – mobil bleiben”, Bern, Switzerland

Description: The avoidance of ticket machines, insecurities using public transportation and fall prevention and other barriers to mobility are addressed in courses about public transportation; the program is funded by providers of public transportation.

Link: http://mobilsein-mobilbleiben.ch/web/de

“BAIM” information on barrier-free transportation, Frankfurt Germany

Description: BAIM (barrier-free travel information on public transport for people with mobility limitations), and the follow-up project BAIMplus provide specific internet based information within the Rhein-Main area. The usual travel schedules are enhanced by actual information on the accessibility of coaches and stations and the availability of facilities such as lifts and escalators.

“Senior on Tour”, leisure activities combined with information on usage of public transport for seniors, Tirol, Austria

Description: Free of charge trips to sights with public transport, including information on usage of public transport. Funded by providers of public transportation.

Link: http://www.klimabuendnis.at/aktuelles/senior-on-tour

“Les Compagnons du Voyage”, accompaniment of elderly (also children and people with impairment) in trains, Paris, France

Description: The door to door accompanying service is provided by SNCF and can be requested by individuals as well as groups. It further includes information on safety and public transport to empower the elderly to travel autonomously. The cost of 20 Euros per hour is tax deductible (around 50%).

8.2.2. Further mobility enhancing services

The following list is the result of a desk research, giving an overview about further mobility services for the elderly. Other than the above presented services, this list contains services which have not been subject to evaluation or research.

Education and empowerment

Seniors unaccustomed to public transportation can be empowered and educated in the usage of trains, buses etc. Services focus mainly on the elderly themselves but also on drivers and providers of public transportation.
• ÖBB “Senior mobil” courses by senior mobility experts for the elderly on trains, Austria (http://www.mobilitaetohnebarrieren.at/start.asp?b=12)
• e-bike courses for seniors, Tirol, Austria (http://www.mobilitaetohnebarrieren.at/start.asp?b=13)
• cycling courses for seniors, Tirol, Austria (http://www.mobilitaetohnebarrieren.at/start.asp?b=13)
• passenger training sessions in Salzburg, Austria (http://www.aeneas-project.eu/de/?page=salzburgmobilitaetstraining)
• passenger training sessions in Munich, Germany (http://www.mvg-mobil.de/projekte/mobilitaetstraining/)
• Driver 65+ refresher course, Norway (Haustein et al. 2013:14)
• “Älter – Aber Sicher!” information for older drivers in Switzerland (http://www.tcs.ch/de/der-club/meine-region/aargau/kurse/aelter-sicher.php)
• training on mobility need of the elderly for railway staff in Luxembourg, theoretical and practical exercises in one day course (Haustein et al. 2013:16)
• training of bus drivers in Salzburg, Austria (http://www.bmvit.gv.at/service/publikationen/verkehr/gesamtverkehr/downloads/mobilitaetalter_lang.pdf)

Subsidy and incentives

Lowering the financial barriers to (public) transportation is a common way to increase their usage. The following services range from the subsidy of fares to transportation free of charge.

• “Südtirolpass 65+” annual ticket for the elderly, from 150 euros annually to free of charge public transportation, South Tyrol, Italy (https://www.sii.bz.it/de/tickets/suedtirol-pass-65-fuer-senioren)
• “Jahres-Ticket SeniorIn”, annual ticket reduced for people 61+ years, Tirol and city transport in Innsbruck, Austria (http://www.vvt.at/page.cfm?vpath=tickets/seniorinnen/jahresticket-senioren)
• “maximo” annual ticket for the elderly, reduced for people 61+ years, all modes of public transportation, Vorarlberg, Austria (http://www.vmobil.at/index.php?menuid=1&reporeid=223)
• “Older Person Bus Pass” free of charge bus travel for pensioners and disabled in England (https://www.gov.uk/apply-for-elderly-person-bus-pass)
• “VORTEILSCARD Senior,” reduced train tickets for people 61+ (http://www.oebb.at/de/Ermassigungskarten/VORTEILSCARD/VORTEILSCARD_Senior/)
• “TAXI 70 PLUS”, reduced taxi prices for the elderly, Schenna, South Tyrol, Italy (http://www.comune.scena.bz.it/system/web/news.aspx?bezirkonr=0&muenonr=219550515&detailonr=224950924-905)
• “Seniorentaxibons”, reduced taxi prices for people older than 70 years or with impairments, Bregenz, Austria (http://www.bregenz.gv.at/buergerservice-verwaltung/di-
Activities

Encouraging the elderly to participate in organised activities is the aim of the following services. The social character and the low organisational effort for the elderly are the advantages of these measurements.

- “Senior on Tour”, leisure activities combined with information on usage of public transport for seniors, Tirol, Austria (http://www.klimabuendnis.at/aktuelles/senior-on-tour)
- guided cycle trips for the elderly in Odense, Denmark (http://www.eltis.org/discover/case-studies/guided-cycle-trips-encouraging-older-people-continue-cycling-odense-denmark)

8.3. ITS (Intelligent Transport Systems)

Intelligent transport systems are services, applications or systems that use information and communication technology in transportation systems. ITS are developed for all modes of transportation but concentrate on road transport.

- Digital bicycle rearward looking assistant (BRM), an assistant that warns bicyclists if a vehicle is approaching from behind in a dangerous manner (https://www.google.it/url?url=https://www.cs.rutgers.edu/research/technical_reports/report.php?id=3D665%26series_id%3D1&rct=j&q=&esrc=s&sa=U&ei=OG70VlGsDMMmWarWMg-NAK&ved=0CB8QFjAC&sig2=DrwGXYNiP0LS8e8hPicMQHQ&usg=AFQjCNGFqxv4I33g12OiTOQjIwRkX0caEbw)
- pedestrian road weather warning (PRWW), a system that sends SMS to users in case of slippery weather conditions. Contents of SMS are time, place, and description of the local situation (http://www.vruits.eu/themes/bamboo/images/Presentation/V RUITS_SIGW_posters.pdf)
- bicycle to car communication (B2V), bicycles as well as cars hold communication technology, car drivers are informed on presence of bicyclists (http://www.vruits.eu/themes/bamboo/images/Presentation/V RUITS_SIGW_posters.pdf)

8.3.1. Special transportation and accompaniment

Special transportation for seniors with reduced mobility are in the majority of cases carried out by organisations like the Red Cross or private taxi companies. But specialised smaller (sub-)organisations do exist. Examples for the test regions will be given in the following:

- AfB – Arbeitsgemeinschaft für Behinderte (South Tyrol)
- The AfB offers not only special transportation for seniors but also accompaniment to medical consultations or therapy. Cost for transportation to medical consultations are refunded to seniors depending on their financial situation (0-100 percent). (http://www.afb.bz.it/de/fahrdienst/fahrdienst-fur-senioren/)
- Car Carissimo is a special bus operated by the SRK (switzerland - land red cross) offers
transportation to leisure activities for seniors with reduced mobility.
(http://www.srk-bern.ch/de/hilfe/car-carissimo/)
- the accompaniment service for inhabitants of retirement homes in Vorarlberg offers
 accompaniment to medical consultations including assistance with dressing/undressing
 and presence at the consultation.
(http://www.gesundheitsinfo.or.at/detail.cfm?id=2384)
- the voluntary accompaniment service in the community of Außervillgraten offers
 accompaniment to leisure activities indoor but also outdoor (e.g. walks)
(http://www.ausservillgraten.gv.at/vereine/besuchs-und-begleitdienst-ausservillgraten.html)
- the health and social services of the administrative districts in Tirol offer accompaniment
 and visiting services for seniors
(http://sozialsprengel-wm.at/angebot/hauswirtschaftsdienst-besuchs-und-begleitdienst)

As the preceding chapters has shown, services for the elderly share the overall goal to
increase or keep mobility but differ in their means. A general distinction between these
services other then by their means can be drawn between services for seniors that are, even
with limitations, able to be mobile on their own and those who are not. For the former services
can aim at the empowerment, education and encouragement of independent mobility . One
example are seniors who recently ceased driving and are not experienced in public transportation.
Special courses for seniors in public transportation can empower to keep up their mobility (e.g.
“Senior mobil”, “ÖV-Know-How”). To provide extended in- formation on vehicles and stations of
public transportation enables also seniors with impairments (e.g. in a wheelchair) to continue
using public transportation (the BAIM-project). Also activities for seniors are effective measurements
to encourage the elderly to undertake trips out of house, with the advantage of the social
character of this measurement (“Senior-on-Tour”). Also accompaniment services have this
advantage.

Loosing the ability to independent mobility narrows the possibilities of measurements. Providing
special transportation and their financial subsidy are the main prospects of keeping the elderly
mobile (see chapter 2.3.1).

Financial subsidies can address both, independently mobile seniors and others. Common
approaches are the reduction of tickets costs like the ÖBB VorteilsCARD (reduction of 50% from
standard price) and the Südtirol Pass 65+ (annual ticket, price depending on age class) or free
of charge public transportation for seniors like in England (“Older Person Bus Pass”). But not
only public transportation is subsidised also taxis and special transportation, like the “TAXI 70
PLUS” in the community of Schenna in South Tyrol and the “Seniorentaxibons” in Bregenz in
Austria.

With the technologization the implementation of ITS is becoming more common. Up to date of
this report, hardly any ITS have a focus on the elderly. Recently the elderly are included in
categories such as vulnerable road users (VRUs).

8.4. Study of needs – Guiding Light test persons

8.4.1. Mobility and modal split

Taking into account the findings from the study of mobility patterns of the elderly and possible
measures and services to increase mobility, a brief survey was conducted with the GUIDING LIGHT test persons. The aim of this study is to find out, which services would be feasible and accepted by the GUIDING LIGHT test persons. The services proposed to the test persons were selected on the basis of existing services as well as innovative services on the basis of applications were thought up. A second step is to reflect on the integration of such services into the GUIDING LIGHT platform (see chapter 4).

Graph 5: Trip frequency by purpose

GUIDING LIGHT addresses persons with restricted mobility, therefore information about frequency, distance and duration of trips is not of further interest to this report. Nevertheless it should be mentioned that test persons undertake trips mostly to do their shopping, take walks and visit family or friends. Work related or trips for official channel (e.g. public administration) and trips to leisure activities are seldom (see graph 5). This confirms the generally low mobility of GUIDING LIGHT test persons.
Graph 6: Usual mode of transportation

As shown in graph 6, walking is the dominant mode of transportation of GUIDING LIGHT test persons. Car usage as a passenger as well as usage of public transportation and taxis are frequent. Cycling is of minor importance. The modal split therefore is in general similar to the modal split of people in higher age classes in general (75 years and more, see chapter 1.3).

Graph 7: Agreement to statements about mobility behaviour
In graph 7 different statements are displayed to which GUIDING LIGHT test persons agreed or disagreed. Besides the regular declaration of agreement or disagreement to the statements, test persons also mentioned that the statement would not be applicable to them. As shown above (graph 6), only about one third of test persons regularly uses public transportation. Therefore these persons might have declared the statements concerning public transportation as not applicable. Another reason might be that some persons only rarely leave the house and therefore might feel that they can't agree nor disagree to statements.

Test persons avoid bad weather situations especially ice and snow - measures to compensate for limitations in mobility as identified by the preceding literature review (see chapter 1.1). Furthermore in periods of darkness and rush hours out-of-house trips are avoided. Finally avoiding unknown routes is a further way of compensating decreasing abilities and increasing limitations.

Concerning the environment in which the GUIDING LIGHT test persons are mobile, there are sufficient facilities to rest along the routes and only one test person mentions obstacles on the route that she/he normally takes. However test persons mention the presence of obstacles in public transportation as well as they express their fear of falling and being a victim of crime (such as theft).

8.4.2. Trip information and feasible services

At last the survey addresses the information media that test persons use to plan their trips and the acceptance of possible services. The suggested services are adapted from the services presented in chapter 5.

Graph 8: Usage of medium for trip information (often/sometimes)

GUIDING LIGHT test persons use mostly paper based media for trip information, as well as personal information given by family or friends. Online and mobile information media such as online timetables or applications are only mentioned twice, respectively not used at all (see
However test persons can imagine to use different mobile services proposed to them. As taxi rides seem to be an important, convenient or inevitable mode of transportation, applications ordering a taxi or reduced taxi fees for seniors are favoured by a majority of test persons.

But also services and application that have a social context are mentioned as helpful by about one third of test persons: These are two application that give information on trips to calender entries or events that are shown on a map. Another app would give notice if family members or friends plan a trip on a similar route, enabling to travel together. Accompaniment
services for public transportation but also for trips by foot are rated as helpful also by about a third of test persons (being a person that assists with connections, luggage and so on).

Applications giving personal information about mobility infrastructure (barrier-free buses, trip information) or weather conditions are rated as useful by about a third to about half of test persons. A majority of test persons rate a navigation system for pedestrians and cyclists as not helpful as well as an application that gives notice about a planned bus ride to the bus driver is not rated as helpful.

The test persons where finally asked if there are other services that they would use or rate as helpful. Four test persons made a notion, two of them emphasizing the usefulness of inexpensive taxi services or free of charge public transportation.

8.5. Connection to Guiding Light

Considering the in chapter 2 identified services, as well as the proposed services in chapter 3.2 this chapter identifies possible connections between existing and potential services and the GUIDING LIGHT platform. GUIDING LIGHT test persons prefer services or applications that connect their mobility to their social surrounding. Also services concerning the subsidy of taxi fares or the communication with taxis are rated as potentially helpful.

The easiest way for the integration of mobility services into the GUIDING LIGHT platform, is the passive provision of information: Where can I check the bus schedule? What is the number of a local taxi provider? A step further would be the integration of a service for specific information, like travel informations for planned trips or the option to order a taxi via the guiding light platform. Finally these services could interact with the users ambient light guiding system, e.g. lighting up the entrance door or the way out at an indicated departure time.

To give an idea how such services could look like, three suggestions will be given. GUIDING LIGHT information is the based on passive information and without interaction with the ambient guiding light system, whereas GUIDING LIGHT connections and the GUIDING LIGHT calendar two other services are interactive applications and are connected to the ambient guiding light system:

- **GUIDING LIGHT information**

This service provides information like telephone numbers or web-links to providers of public transportation, taxis or special transportation providers. The users can get this information from the platform but has to use other devices or software (telephone, browser) to connect to the providers.

- **GUIDING LIGHT connections**

This application is integrated in the GUIDING LIGHT platform and provides users with travel information to a chosen destination and time for public transportation. It also offers to call or order a taxi or a special transportation provider.

The application offers a convenient reminder function (optional) for planned journeys, connected to the GUIDING LIGHT system providing a reminder based on a light signal (spot
light on the entrance door).

- **GUIDING LIGHT calendar**

A calendar that provides not only date and place of events, but also travel information for public transport as well as the possibility to call a taxi or special transportation in time for the event (through GUIDING LIGHT connections). Entries to the calendar can be made by test persons as well as their friends and families. The calendar offers the same reminder function as GUIDING LIGHT connections.

As these three suggestions demonstrate, possibilities of services integrated in the GUIDING LIGHT platform range from passive to interactive services that also use the ambient guiding light system. The latter therefore are of highly innovative character. GUIDING LIGHT provides the basis to connect the goal of increasing indoor-mobility to out-of-house-mobility, thereby contributing to keeping up and increasing the mobility of the elderly.

8.6. Outlook

The study at hand shown that mobility patterns of the elderly change especially in older age classes as well as with the appearance of limitations and impairments. Mobility behaviour is then adapted, certain situations and conditions are avoided and travels distances are shortened and relocated to the closer environment, preferably in walking distance.

Existing measures aim on increasing the mobility often by means of empowerment (e.g. in using public transportation) and financial incentives. Applications or intelligent transport systems (ITS) for the elderly are still uncommon. This is also represented also in how GUIDING LIGHT test persons gather their trip information - namely paper based or through personal inquiry.

Measures in the sense of potential services, incentives and applications where suggested to GUIDING LIGHT test persons. An openness, even though limited, to innovative systems is demonstrated: About the half of test persons rated applications that aim on mobility in a social context (similar trips with family or friends, events) as helpful. To a lesser extent (about a third) applications on mobility infrastructure and weather conditions are rated as helpful. More than half of the test persons rate an application that orders a taxi as helpful, as well as reduced taxi prices for seniors would widely be appreciated.

Innovative services and applications therefore would probably be best accepted if they would aim on mobility in a social context, connecting the elderly to other seniors, family or friends. But also applications giving trip information could assist the elderly to keep up being mobile. However a personal introduction would be necessary.

Future mobility pattern will be different, driven by technological innovations but also performed by generations using mobility applications today. These generations will be more open and experienced with applications and mobile services, opening up an possibilities to keep the elderly mobile.
1. References

Edwards, Jerri; Lunsman, Melissa; Perkins, Matinique; Rebok, George; Roth, David (2009): Driving Cessation and Health Trajectories in Older adults. In: Journal of Gerontology, 64,12, p. 1290-1295.

Annex. Pictures from Guiding Light General Meeting